Optical Communication on CubeSats - Enabling the Next Era in Space Science
نویسندگان
چکیده
CubeSats are excellent platforms to rapidly perform simple space experiments. Several hundreds of CubeSats have already been successfully launched in the past few years and the number of announced launches grows every year. These platforms provide an easy access to space for universities and organizations which otherwise could not afford it. However, these spacecraft still rely on RF communications, where the spectrum is already crowded and cannot support the growing demand for data transmission to the ground. Lasercom holds the promise to be the solution to this problem, with a potential improvement of several orders of magnitude in the transmission capacity, while keeping a low size, weight and power. Between 2016 and 2017, The Keck Institute for Space Studies (KISS), a joint institute of the California Institute of Technology and the Jet Propulsion Laboratory, brought together a group of space scientists and lasercom engineers to address the current challenges that this technology faces, in order to enable it to compete with RF and eventually replace it when high-data rate is needed. After two one-week workshops, the working group started developing a report addressing three study cases: low Earth orbit, crosslinks and deep space. This paper presents the main points and conclusions of these KISS workshops. Keywords—lasercom, smallsat, cubesat, LEO, crosslink, intersatellite, deep space, kiss
منابع مشابه
Modeling of RF Waves in Free Space Optical Communication System Under Gamma-Gamma Turbulent Channel Effect
In this paper, an enhancement design of communication system using optical radio frequency (RF) waves in free space optical communication (FSO) system is presented. To our knowledge, it is the first time that the effect of Gamma-Gamma turbulent channel model on the performance of the proposed system is analyzed and simulated. To obtain an optical communication system with good performance and h...
متن کاملCubesat Communication Direction and Capabilities at Morehead State University and Nasa Goddard Space Flight Center, Wallops Flight Facility
The Wallops 18-Meter diameter UHF-Band and the Morehead State 21-Meter diameter current S-band and future XBand and UHF-Band CubeSat Groundstations answer a growing need for high data rate from CubeSats over government licensed frequencies. Ten years ago, when CubeSats began, they were nothing more than simple science experiments, typically consisting of a camera and a low data rate radio. The ...
متن کاملDevelopment of the Standard CubeSat Deployer and a CubeSat Class PicoSatellite
Cal Poly students are participating in the development of a new class of picosatellite, the CubeSat. CubeSats are ideal as space development projects for universities around the world. In addition to their significant role in educating space scientists and engineers, CubeSats provide a low-cost platform for testing and space qualification of the next generation of small payloads in space. A key...
متن کاملEmerging Optical CDMA Techniques and Applications
In this paper we present an in-depth review on the trends and the directions taken by the researchers worldwide in Optical Code Division Multiple Access (OCDMA) systems. We highlight those trends and features that are believed to be essential to the successful introduction of various OCDMA techniques in communication systems and data networks in near future. In particular we begin by giving a c...
متن کاملErratum: Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide
Magnetometers are essential for scientific investigation of planetary bodies and are therefore ubiquitous on missions in space. Fluxgate and optically pumped atomic gas based magnetometers are typically flown because of their proven performance, reliability, and ability to adhere to the strict requirements associated with space missions. However, their complexity, size, and cost prevent their a...
متن کامل